continuwuity/src/database/pool.rs
Jason Volk a67ab75417 fix edition 2024 lints
Signed-off-by: Jason Volk <jason@zemos.net>
2025-02-27 10:26:45 -05:00

456 lines
11 KiB
Rust

mod configure;
use std::{
mem::take,
sync::{
Arc, Mutex,
atomic::{AtomicUsize, Ordering},
},
thread,
thread::JoinHandle,
};
use async_channel::{QueueStrategy, Receiver, RecvError, Sender};
use conduwuit::{
Error, Result, Server, debug, debug_warn, err, error, implement,
result::DebugInspect,
smallvec::SmallVec,
trace,
utils::sys::compute::{get_affinity, nth_core_available, set_affinity},
};
use futures::{TryFutureExt, channel::oneshot};
use oneshot::Sender as ResultSender;
use rocksdb::Direction;
use self::configure::configure;
use crate::{Handle, Map, keyval::KeyBuf, stream};
/// Frontend thread-pool. Operating system threads are used to make database
/// requests which are not cached. These thread-blocking requests are offloaded
/// from the tokio async workers and executed on this threadpool.
pub(crate) struct Pool {
server: Arc<Server>,
queues: Vec<Sender<Cmd>>,
workers: Mutex<Vec<JoinHandle<()>>>,
topology: Vec<usize>,
busy: AtomicUsize,
queued_max: AtomicUsize,
}
/// Operations which can be submitted to the pool.
pub(crate) enum Cmd {
Get(Get),
Iter(Seek),
}
/// Multi-point-query
pub(crate) struct Get {
pub(crate) map: Arc<Map>,
pub(crate) key: BatchQuery<'static>,
pub(crate) res: Option<ResultSender<BatchResult<'static>>>,
}
/// Iterator-seek.
/// Note: only initial seek is supported at this time on the assumption rocksdb
/// prefetching prevents mid-iteration polls from blocking on I/O.
pub(crate) struct Seek {
pub(crate) map: Arc<Map>,
pub(crate) state: stream::State<'static>,
pub(crate) dir: Direction,
pub(crate) key: Option<KeyBuf>,
pub(crate) res: Option<ResultSender<stream::State<'static>>>,
}
pub(crate) type BatchQuery<'a> = SmallVec<[KeyBuf; BATCH_INLINE]>;
pub(crate) type BatchResult<'a> = SmallVec<[ResultHandle<'a>; BATCH_INLINE]>;
pub(crate) type ResultHandle<'a> = Result<Handle<'a>>;
const WORKER_LIMIT: (usize, usize) = (1, 1024);
const QUEUE_LIMIT: (usize, usize) = (1, 4096);
const BATCH_INLINE: usize = 1;
const WORKER_STACK_SIZE: usize = 1_048_576;
const WORKER_NAME: &str = "conduwuit:db";
#[implement(Pool)]
pub(crate) fn new(server: &Arc<Server>) -> Result<Arc<Self>> {
const CHAN_SCHED: (QueueStrategy, QueueStrategy) = (QueueStrategy::Fifo, QueueStrategy::Lifo);
let (total_workers, queue_sizes, topology) = configure(server);
let (senders, receivers): (Vec<_>, Vec<_>) = queue_sizes
.into_iter()
.map(|cap| async_channel::bounded_with_queue_strategy(cap, CHAN_SCHED))
.unzip();
let pool = Arc::new(Self {
server: server.clone(),
queues: senders,
workers: Vec::new().into(),
topology,
busy: AtomicUsize::default(),
queued_max: AtomicUsize::default(),
});
pool.spawn_until(&receivers, total_workers)?;
Ok(pool)
}
impl Drop for Pool {
fn drop(&mut self) {
self.close();
debug_assert!(
self.queues.iter().all(Sender::is_empty),
"channel must should not have requests queued on drop"
);
debug_assert!(
self.queues.iter().all(Sender::is_closed),
"channel should be closed on drop"
);
}
}
#[implement(Pool)]
#[tracing::instrument(skip_all)]
pub(crate) fn close(&self) {
let workers = take(&mut *self.workers.lock().expect("locked"));
let senders = self.queues.iter().map(Sender::sender_count).sum::<usize>();
let receivers = self
.queues
.iter()
.map(Sender::receiver_count)
.sum::<usize>();
for queue in &self.queues {
queue.close();
}
if workers.is_empty() {
return;
}
debug!(
senders,
receivers,
queues = self.queues.len(),
workers = workers.len(),
"Closing pool. Waiting for workers to join..."
);
workers
.into_iter()
.map(JoinHandle::join)
.map(|result| result.map_err(Error::from_panic))
.enumerate()
.for_each(|(id, result)| match result {
| Ok(()) => trace!(?id, "worker joined"),
| Err(error) => error!(?id, "worker joined with error: {error}"),
});
}
#[implement(Pool)]
fn spawn_until(self: &Arc<Self>, recv: &[Receiver<Cmd>], count: usize) -> Result {
let mut workers = self.workers.lock().expect("locked");
while workers.len() < count {
self.clone().spawn_one(&mut workers, recv)?;
}
Ok(())
}
#[implement(Pool)]
#[tracing::instrument(
name = "spawn",
level = "trace",
skip_all,
fields(id = %workers.len())
)]
fn spawn_one(
self: Arc<Self>,
workers: &mut Vec<JoinHandle<()>>,
recv: &[Receiver<Cmd>],
) -> Result {
debug_assert!(!self.queues.is_empty(), "Must have at least one queue");
debug_assert!(!recv.is_empty(), "Must have at least one receiver");
let id = workers.len();
let group = id.overflowing_rem(self.queues.len()).0;
let recv = recv[group].clone();
let handle = thread::Builder::new()
.name(WORKER_NAME.into())
.stack_size(WORKER_STACK_SIZE)
.spawn(move || self.worker(id, recv))?;
workers.push(handle);
Ok(())
}
#[implement(Pool)]
#[tracing::instrument(level = "trace", name = "get", skip(self, cmd))]
pub(crate) async fn execute_get(self: &Arc<Self>, mut cmd: Get) -> Result<BatchResult<'_>> {
let (send, recv) = oneshot::channel();
_ = cmd.res.insert(send);
let queue = self.select_queue();
self.execute(queue, Cmd::Get(cmd))
.and_then(move |()| {
recv.map_ok(into_recv_get)
.map_err(|e| err!(error!("recv failed {e:?}")))
})
.await
}
#[implement(Pool)]
#[tracing::instrument(level = "trace", name = "iter", skip(self, cmd))]
pub(crate) async fn execute_iter(self: &Arc<Self>, mut cmd: Seek) -> Result<stream::State<'_>> {
let (send, recv) = oneshot::channel();
_ = cmd.res.insert(send);
let queue = self.select_queue();
self.execute(queue, Cmd::Iter(cmd))
.and_then(|()| {
recv.map_ok(into_recv_seek)
.map_err(|e| err!(error!("recv failed {e:?}")))
})
.await
}
#[implement(Pool)]
fn select_queue(&self) -> &Sender<Cmd> {
let core_id = get_affinity().next().unwrap_or(0);
let chan_id = self.topology[core_id];
self.queues.get(chan_id).unwrap_or_else(|| &self.queues[0])
}
#[implement(Pool)]
#[tracing::instrument(
level = "trace",
name = "execute",
skip(self, cmd),
fields(
task = ?tokio::task::try_id(),
receivers = queue.receiver_count(),
queued = queue.len(),
queued_max = self.queued_max.load(Ordering::Relaxed),
),
)]
async fn execute(&self, queue: &Sender<Cmd>, cmd: Cmd) -> Result {
if cfg!(debug_assertions) {
self.queued_max.fetch_max(queue.len(), Ordering::Relaxed);
}
if queue.is_full() {
debug_warn!(
capacity = ?queue.capacity(),
"pool queue is full"
);
}
queue
.send(cmd)
.await
.map_err(|e| err!(error!("send failed {e:?}")))
}
#[implement(Pool)]
#[tracing::instrument(
parent = None,
level = "debug",
skip(self, recv),
fields(
tid = ?thread::current().id(),
),
)]
fn worker(self: Arc<Self>, id: usize, recv: Receiver<Cmd>) {
self.worker_init(id);
self.worker_loop(&recv);
}
#[implement(Pool)]
fn worker_init(&self, id: usize) {
let group = id.overflowing_rem(self.queues.len()).0;
let affinity = self
.topology
.iter()
.enumerate()
.filter(|_| self.queues.len() > 1)
.filter(|_| self.server.config.db_pool_affinity)
.filter_map(|(core_id, &queue_id)| (group == queue_id).then_some(core_id))
.filter_map(nth_core_available);
// affinity is empty (no-op) if there's only one queue
set_affinity(affinity.clone());
#[cfg(all(not(target_env = "msvc"), feature = "jemalloc"))]
if affinity.clone().count() == 1 && conduwuit::alloc::je::is_affine_arena() {
use conduwuit::{
alloc::je::this_thread::{arena_id, set_arena},
result::LogDebugErr,
};
let id = affinity.clone().next().expect("at least one id");
if let Ok(arena) = arena_id() {
if arena != id {
set_arena(id).log_debug_err().ok();
}
}
}
debug!(
?group,
affinity = ?affinity.collect::<Vec<_>>(),
"worker ready"
);
}
#[implement(Pool)]
fn worker_loop(self: &Arc<Self>, recv: &Receiver<Cmd>) {
// initial +1 needed prior to entering wait
self.busy.fetch_add(1, Ordering::Relaxed);
while let Ok(cmd) = self.worker_wait(recv) {
self.worker_handle(cmd);
}
}
#[implement(Pool)]
#[tracing::instrument(
name = "wait",
level = "trace",
skip_all,
fields(
receivers = recv.receiver_count(),
queued = recv.len(),
busy = self.busy.fetch_sub(1, Ordering::Relaxed) - 1,
),
)]
fn worker_wait(self: &Arc<Self>, recv: &Receiver<Cmd>) -> Result<Cmd, RecvError> {
recv.recv_blocking().debug_inspect(|_| {
self.busy.fetch_add(1, Ordering::Relaxed);
})
}
#[implement(Pool)]
fn worker_handle(self: &Arc<Self>, cmd: Cmd) {
match cmd {
| Cmd::Get(cmd) if cmd.key.len() == 1 => self.handle_get(cmd),
| Cmd::Get(cmd) => self.handle_batch(cmd),
| Cmd::Iter(cmd) => self.handle_iter(cmd),
}
}
#[implement(Pool)]
#[tracing::instrument(
name = "iter",
level = "trace",
skip_all,
fields(%cmd.map),
)]
fn handle_iter(&self, mut cmd: Seek) {
let chan = cmd.res.take().expect("missing result channel");
if chan.is_canceled() {
return;
}
let from = cmd.key.as_deref();
let result = match cmd.dir {
| Direction::Forward => cmd.state.init_fwd(from),
| Direction::Reverse => cmd.state.init_rev(from),
};
let chan_result = chan.send(into_send_seek(result));
let _chan_sent = chan_result.is_ok();
}
#[implement(Pool)]
#[tracing::instrument(
name = "batch",
level = "trace",
skip_all,
fields(
%cmd.map,
keys = %cmd.key.len(),
),
)]
fn handle_batch(self: &Arc<Self>, mut cmd: Get) {
debug_assert!(cmd.key.len() > 1, "should have more than one key");
debug_assert!(!cmd.key.iter().any(SmallVec::is_empty), "querying for empty key");
let chan = cmd.res.take().expect("missing result channel");
if chan.is_canceled() {
return;
}
let keys = cmd.key.iter();
let result: SmallVec<_> = cmd.map.get_batch_blocking(keys).collect();
let chan_result = chan.send(into_send_get(result));
let _chan_sent = chan_result.is_ok();
}
#[implement(Pool)]
#[tracing::instrument(
name = "get",
level = "trace",
skip_all,
fields(%cmd.map),
)]
fn handle_get(&self, mut cmd: Get) {
debug_assert!(!cmd.key[0].is_empty(), "querying for empty key");
// Obtain the result channel.
let chan = cmd.res.take().expect("missing result channel");
// It is worth checking if the future was dropped while the command was queued
// so we can bail without paying for any query.
if chan.is_canceled() {
return;
}
// Perform the actual database query. We reuse our database::Map interface but
// limited to the blocking calls, rather than creating another surface directly
// with rocksdb here.
let result = cmd.map.get_blocking(&cmd.key[0]);
// Send the result back to the submitter.
let chan_result = chan.send(into_send_get([result].into()));
// If the future was dropped during the query this will fail acceptably.
let _chan_sent = chan_result.is_ok();
}
fn into_send_get(result: BatchResult<'_>) -> BatchResult<'static> {
// SAFETY: Necessary to send the Handle (rust_rocksdb::PinnableSlice) through
// the channel. The lifetime on the handle is a device by rust-rocksdb to
// associate a database lifetime with its assets. The Handle must be dropped
// before the database is dropped.
unsafe { std::mem::transmute(result) }
}
fn into_recv_get<'a>(result: BatchResult<'static>) -> BatchResult<'a> {
// SAFETY: This is to receive the Handle from the channel.
unsafe { std::mem::transmute(result) }
}
pub(crate) fn into_send_seek(result: stream::State<'_>) -> stream::State<'static> {
// SAFETY: Necessary to send the State through the channel; see above.
unsafe { std::mem::transmute(result) }
}
fn into_recv_seek(result: stream::State<'static>) -> stream::State<'_> {
// SAFETY: This is to receive the State from the channel; see above.
unsafe { std::mem::transmute(result) }
}